

Balloon Flight Integration Calorimeter Calibration Needs

J. Eric Grove Naval Research Lab

Calibration during integration

GLAST Software 16-19 Jan 2001

At convenient times during BF payload integration, we require

□ Muon calibration

Overnight run

reqmt: >8 hrsGoal: >12 hrs

- CAL-only trigger or TKR trigger.
- Data stream

reqmt: at least CAL-only

- goal: full instrument

- TKR recon for muon trajectories.

Need access to data files!

Electronic calibration

- Full "intlin" calibration
- CAL-only data stream, CalGSE
 - No need for full instrument data stream. Full stream would complicate analysis.
- ~3 hr acquisition time
- Analysis of data is off line in IDL.
- No additional analysis software burden.
- Result is ADC to fC tables.

Does BF GSE support full CAL commanding? What's the cmd i/f? How can we do these things without switching to CalGSE?

2

Naval Research Lab Washington DC

Pre-flight calibration

GLAST Software 16-19 Jan 2001

Prior to sealing the pressure vessel and declaring flight readiness, we require

3

Muon calibration

- Overnight run
 - regmt: >8 hrs
 - Goal: >12 hrs (~300 good muons per cm²)
- CAL-only trigger or TKR trigger.
- Data stream
 - regmt: at least CAL-only
 - goal: full instrument
 - TKR recon for muon trajectories. Need access to data file

☐ One big, long muon calibration

- Either Palestine or GSFC
- >4 days (~2500 good muons per cm²)
- TKR trigger.
- Full data stream and TKR recon.
- Result is good map of light asymmetry.

Electronic calibration

- Full "intlin" calibration
- CAL-only data stream, CalGSE
 - No need for full instrument data stream. Full stream would complicate analysis.
- ~3 hr acquisition time
- Analysis of data is off line in IDL.
- No additional analysis software burden.
- Result is ADC to fC tables.

Flight-ready calibration

GLAST Software 16-19 Jan 2001

After declaring flight readiness, we require

☐ Muon aliveness test

- Question: Are all channels still alive?
- Short run
 - regmt: >15 minutes?
 - Goal: As long as thermally safe inside pressure vessel.
- Assume TKR trigger.
- Full instrument data stream. Need access to data file.
- Subsequent TKR recon for muon trajectories.

□ Electronic monitor

- Question: Any gross electronic changes?
- Quick "intlin" calibration
- ~15-minute acquisition time
- Full instrument data stream.
- Analysis of data is off line in IDL.
- Need access to data file.
- Need raw tlm read routine for IDL.
- Output summary figures.

Balloon flight GCRs

5

GLAST Software 16-19 Jan 2001

☐ GCR rates for Palestine balloon flight

- Require passage through uppermost full Si layer and bottom of Csl
- Used CREME96 for 35km above Palestine in 2001, from H to Ni
- See http://gamma.nrl.navy.mil/glast/tech_memos/cremeballoon.pdf

Assuming 8 hrs at float

~4000 CNO

~900 Ne, Mg, and Si

~250 Fe

to play with.

Species	Total rate (per hr)	Non-fragmenting rate (per hr)
С	220	63
N	58	15
О	220	55
Ne	35	8
Mg	46	10
Si	35	7
Fe	29	4

Naval Research Lab Washington DC

Integration issues

GLAST Software 16-19 Jan 2001

- □ Balloon flight
 - "What is needed to ensure instr works on delivery?"
 - Command interface e.g. CalGSE
 - Data interface e.g. CalGSE
 - Realtime displays e.g. CalGSE
 - Off-line post processing e.g. I DL and CAL routines
 - NRL has supplied some sample diagnostics, will provide more.
- □ LAT flight instrument

Integration Database

GLAST Software 16-19 Jan 2001

- ☐ The various calibration processes produce a number of parameters describing the response of the CsI logs.
 - All are time-dependent (TBR).
 - Time scale is likely to be ~ weeks to months (TBR).
- □ Calibration Parameter Database is a service of Software Central.

Pedestals

- Accumulated on board
 - Telemetered: pedestal, pedestal width, diagnostic histogram
 - Optional diagnostic mode telemeters full CAL data set, i.e. not zero-suppressed.
 - 2 bytes x 2 parameters x 4 ranges x 2 ends x 1536 logs = 48 kB

2. Differential linearity correction

- Make the CDB smooth.
 - Worth thinking about some more. Consider 1 byte per ADC bin per range.
 - 1 byte x 4096 channels x 4 ranges x 2 ends x 1536 logs = 50 MB

Naval Research Lab Washington DC

Calibration Parameter Database

GLAST Software 16-19 Jan 2001

- 3. Integral linearity correction (ADC to fC)
 - Electronic calibration
 - Internal charge-injection circuit; used during in-flight diagnostic mode
 - 4 bytes x 10 parameters x 4 ranges x 2 ends x 1536 logs = 480 kB
 - GCR calibration
 - Might uncover additional non-linearities. Might not; thus these might not be used.
 - 4 bytes x 5 parameters x 4 ranges x 2 ends x 1536 logs = 240 kB
- 4. Gain (optical conversion efficiency: fC to MeV[center of log])
 - Accounts for light collection: electrons at preamp per MeV deposited
 - Calculated from GCR Calibration data. Updates ground calibration.
 - 4 bytes x 4 ranges x 2 ends x 1536 logs = 48 kB
- Light attenuation model (MeV[center] to MeV[position])
 - Accounts for variation of light collection along each log.
 - Calculated from GCR Calibration data. Updates ground calibration.
 - Small and large PI Ns have same light attenuation, so each log has 3 models:
 - Individual ends
 - 4 bytes x 5 parameters x 2 ends x 1536 logs = 60 kB
 - Sum of ends
 - 4 bytes x 5 parameters x 1536 logs = 30 kB

Eduardo asks ...

GLAST Software 16-19 Jan 2001

- □ "I nputs to in-flight calibration?"
 - I assume "in-flight" means "on-board the LAT."
 - Pedestal collection and histogramming occurs on board.
 - Electronic calibration triggering and collection occurs on board.
 - eCalib analysis is on ground.
- "I nputs to off-line calibration?"
 - Flight telemetry
 - Pedestal histograms
 - Electronic calibration triggers
 - GCR calibration triggers
 - Ground calibration results
- □ "Inputs to Science database?"

GLAST Software 16-19 Jan 2001

High flux of GCRs gives good calibration of full dynamic range.

- □ Concept:
- 1. ACD flags events > few MIPs.
- 2. ACD flags 1 in 1000 single-MIPs.
- 3. Accept only events with good TKR.
- 4. Accept only events with no chargechanging interactions in CAL.
- 5. Correct ΔE for pathlength in CsI bar.
- 6. Accumulate dE/dx in each bar.
- Derive calibration with statistical precision of better than few % each day over full dynamic range.

He: ~140 Hz

CNO: ~10 Hz

Si: ~0.4 Hz

Fe: ~0.8 Hz

 \Rightarrow ~1100 per xtal per day

 \Rightarrow ~70 per xtal per day

Naval Research Lab Washington DC

GLAST Software 16-19 Jan 2001

□ Questions for simulation or analytic estimation:

- 1. What is rate of >few MIPs in ACD for everything but primary GCRs? Does this trigger add significantly to data volume?
- 2. How well are CsI bars on outer edge of calorimeter covered by tracked GCRs? What is the rate of each species?
- 3. How does rate of useful GCRs scale with geometry cuts?
 - Cuts with CsI bars. Cuts for good TKR geometry.
- 4. What is the shape of ΔE distributions for useful GCRs? How well can they be centroided?
 - Finite width from dE/dx dependence on E_0 , Landau fluctuations, and pathlength uncertainty.
- 5. Calibration above ~10 GeV: Use long-pathlength Fe. What is rate? How well is pathlength known?

GLAST Software 16-19 Jan 2001

□ Particle fluxes

- CREME96 for 28.5 deg orbit for abundances and spectra.
- Conservative estimates: Required GCR to pass through upper and lower faces of CAL.

□ Particle ranges

- At 2 GeV/n in CsI, ranges of C and Fe are 440 g/cm² and 110 g/cm², resp.
- All incident C will penetrate CAL (9X₀ = 76 g/cm²).
- All but low-energy, large-angle Fe will penetrate.

Z range	Rate (s ⁻¹)	
1 - 28	1020	
6 - 28	12.4	
10 - 28	3.6	
24 - 28	0.7	

Naval Research Lab Washington DC

13

GLAST Software 16-19 Jan 2001

□ Nuclear interactions

- Majority of GCRs suffer nuclear interactions as they pass through calorimeter.
- Interaction lengths:
 - $\lambda_{N.CsI}$ = 86 g/cm²
 - $\lambda_{Fe,CsI} = 58 \text{ g/cm}^2$
- GCR at 45 deg traverses ~100 g/cm² of CsI
 - ~30% of CNO group and
 ~20% of Fe survive without interacting.
- □ How many per day in each CsI bar?
 - ~1100 non-interacting CNO.
 - ~70 non-interacting Fe.

□ Scintillation efficiency

- Light output of CsI (TI) is not strictly proportional to ΔE for heavy ions.
 - dL/dE, the light output per unit energy loss, decreases slowly with increasing dE/dx for heavy ions, but is constant for EM showers.
 - dL/dE is fcn of dE/dx, rather than charge of the beam.
 - Magnitude (in Nal!!):
 - ~0.9 near minimum ionizing.
 - ~0.3 near end of range.
- □ Need to measure in heavy ion beam!

GLAST Software 16-19 Jan 2001

□ Calibration Uncertainty

- \square Need to bin GCRs by estimated ΔE . This is uncertain for following reasons:
 - Uncertainty in initial energy.
 - AdF/dx ~ 10% over 2 6 GeV/n.
 - Landau fluctuations.
 - σ_1 < 5% for CNO near 5 GeV/n.
 - σ_1 < 5% for Fe near 5 GeV/n
 - Unidentified nuclear interactions.
 - p-stripping from C is hard to miss.
 - p-stripping from Fe.
 - $\Delta E < 10\%$.
 - Uncertainty in dL/dE.
 - Guess < few %.
- □ Adding in quadrature gives rms < 20%.
- With ~1000 CNO per bar per day, statistical precision of ~1% per day is achievable.

